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We explore the EPR experiment in the case of the breakup of a polyatomic molecule into two mutually
entangled fragments. We give a derivation based on the properties of the dissociated wave function that no
information is transferred, not even at a speed smaller than the speed of light, from one entangled partner to
the other concerning its measurement or lack thereof. We also explain experiments that show that each separated
fragment can retain coherences induced in its parent molecule by a broad band laser pulse, regardless of
whether a measurement has been performed on its entangled partner.

I. Introduction

In their famous paper,1 Einstein, Podolski, and Rosen (EPR)
pointed out that a necessary consequence of quantum mechanics
is the establishment of correlations between two entangled
particles dissociated from the same initial adduct. Thus, if the
total spin of the adduct is zero, a choice of quantization axis
upon measurement of one fragment would yield a spin which
is the exact opposite of the spin measured for the other fragment
but only when the same axis of quantization is chosen in both
measurements. The issue is how can one fragment be “aware”
of the choice made regarding the quantization axis of the other?

Although the existence of these correlations has been
established experimentally,2,3 it has however been argued on
the basis of causality4 that no “spooky interaction at a distance”
nor any information can be transferred between the fragments
as a sole result of a measurement being performed on either
fragment. Were it to be the case, we would be able to transfer
information at speeds greater than that of light. Only when the
two observers get together, or send each other the details of
their measurements by any other ordinary “classical” com-
munication channel, do they become aware of the existence of
these correlations.

It is of interest to see whether the above heuristic argument
can also be derived directly from the Schro¨dinger equation, and
more explicitly, from the properties of its solutions. It is also
of interest to see whether any information, even at sub-light
speeds, which is not forbidden by causality, can be transferred
between the fragments as a result of observations performed
on one of them.

In this paper, we address these issues by analyzing the EPR
dissociation of a case more complicated than those considered
so far, that of a polyatomic molecule breaking apart under the
action of a broad or narrow band light pulse to yield two
fragments. Here, because of the presence of both discrete and
continuous variables, the collapse of the wave function upon
measurement is even more dramatic than in the two particle
case and would seem to enable an observer of one fragment to
sense when an observation of the other fragment is being made.
This however, as we show below, is not the case.

II. Multichannel Photodissociation

Consider irradiating a polyatomic molecule, A-B, where A
and B are atoms or groups of atoms, existing initially in state
Ψ0 of energyE0, with a pulse of light of the form

whereE is an energy value in the continuum andωE ) E -
E0, with a.u., for whichp ) 1, being used here and throughout
this paper. After the pulse is over, those molecules that have
absorbed a photon from the pulse and are on their way to yield
the A + B fragments are described5 by the following wave
function

whereR ) RA - RB, with RA andRB denoting, respectively,
the lab-frame coordinates of A (c.m.) and B (c.m.). In the above,
r is a collective index for the B fragment internal coordinates
and n stands for{V, k̂}, where V is the collective quantum
number for the internal motions of B andk̂ is the direction
angles ofk, the momentum conjugate toR. ∑n designates
summation overV and integration overk̂.

ψ(-n)(R,r ,E) exp(-iEt) are scattering solutions6 of the full
time independent Schro¨dinger equation

which approach at larget a single product of an internal wave
function of B and a plane wave inR, function

wherekV(E) is the “channel-momentum” vector whose magni-
tude is determined by energy conservation to be

In the above,eV is the energy of theφV B state andµ is the† Part of the “Chava Lifshitz Memorial Issue”.

E1 (t) ) Re∫ dE ε1(ωE) exp(-iωEt) (1)

Ψ1(R,r ,t) ) ∫ dE ∑
n

cn
(1)(E)ψ(-n)(R,r ,E) exp(-iEt) (2)

lim
εf+0

(E - iε - H)ψ(-n)(R, r , E) ) 0 (3)

ψ(-n)(R, r , E) exp(-iEt)98
tf∞

N(kV(E))φV(r ) exp[ikV(E)‚R - iEt] (4)

kV
2(E)

2µ
) E - eV (5)
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(A-B) reduced mass, defined as

N(k) is a normalization constant that guarantees that

that is

cn
(1) (E) of eq 2 are preparation coefficients, given in first-

order perturbation theory as

whered1 is the transition dipole operator in the direction of the
electric fieldE1.

III. Nondegenerate Case

III.1. Collapsed Wave Function. It follows from eq 5 that,
if the B fragment has no degeneracies and A is assumed to be
a structureless atom, knowledge ofE and determination ofkV(E)
(which can be performed by measuring atom A only) completely
determines whicheV level of B is occupied, thereby causing
the collapse of the wave packet of eq 2 to one term only.

Before discussing this further, we verify thatkV(E) can be
determined by measuring A alone. We note that, if we assume
that the total c.m. momentumKA-B ) 0, we have that

Since

we have that

The above implies that as we measurekV(E), the wave function,
which in the far future is given, using eq 4, as

must collapse to a single term

As we repeatedly measure A and bin these measurements
according to their differentkV(E) values, the system is described
by a density matrix of the form

with ψn being the “collapsed” wave function of eq 13. In the

CW case where

we have that

III.2. Uncollapsed Wave Function. We can write the
uncollapsed wave function as a sum of products of internal and
translational wave functions

where

When we lack knowledge of A, the probability-density of B
associated with this wave function is obtained by squaring this
expression and integrating over the relative translational coor-
dinateR

where

whereV is a limited volume of separation between the A and
B fragments.

At R . 1/∆k values, terms with∆k * 0 decay to zero and
the probability-density becomes that of the collapsed case.
Before dealing with the limitedV case further, we examine the
case in which the separation between A and B is allowed to
assume any value. We then obtain from eq 19 that

hence

where

or

As a real example, we consider the photodetachment of SF6
-

cn
(1)(E) ) cn

(1)(E0)δ(E - E0)

F(r ) ) ∑
V
∫ dk̂ |cV,k̂

(1)(E0)φV(r )|2 (15)

Ψ1(R,r ,t) ) ∑
n
∫ dE cn

(1)(E)φV(r )ψn(R,E) exp(-iEt) (16)

ψn(R,E) ) N(kV(E)) exp(ikV(E)‚R) (17)

FB ) ∫V
dR |Ψ(R, r , t)|2 )

∑
n,n′

dE dE′ Gn,n′(E,E′) cn(E) cn′
/ (E′) φV(r ) φV′

/ (r )

exp[i(E′ - E)t] (18)

Gn,n′(E, E′) ≡ ∫V
dR ψn′

/ (R,E′) ψn(R,E) )

∫V
dR N(kV(E)) N(kV′(E′)) exp[i(kV(E) - kV′(E′))‚R] )

N(kV(E)) N(kV′(E′))
8 sin(∆kxX) sin(∆kyY) sin(∆kzZ)

∆kx∆ky∆kz
(19)

Gn,n′(E,E′) ) N(kV(E))2 δ(kV(E) - kV′(E′)) δ(k̂V(E) - kV′(E′))
(20)

FB )

∑
V,V′
∫ dE∫k̂cV,k̂(E) cV′,k̂

/ (E′) φV(r ) φV′
/ (r ) exp[i(eV′ - eV)t]

(21)

kV(E) ) kV′(E′)

E′ ) E - eV + eV′ (22)

1
µ

) 1
m(A)

+ 1
m(B)

that is

µ )
m(A)m(B)

m(A) + m(B)
(6)

∫ dR |N(k)|2 exp[i(k - k′)‚R] ) δ(E - E′)δ(k̂ - k̂′) (7)

N(k) ) (µk/(2π)3)1/2 (8)

cn
(1)(E) ) 2πiε1(ωE)〈ψ(-n)(E)|d1|ψ0〉 (9)

kV
A ) -kV

B (10)

kV(E) ) µ(vV
A - vV

B)

kV(E) ) kV
A ) -kV

B (11)

Ψ1(R,r ,t) f

∑
n
∫ dE cn

(1)(E)φV(r )N(kV(E)) exp[ikV(E)‚R - iEt] (12)

ψn(R,r ,t) )

∫ dE cn
(1) (E)φV(r )N(kV(E)) exp[ikV(E)‚R - iEt] (13)

F ) ∑
n

|ψn〉〈ψn| (14)
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where j designates the SF6 angular momentum. The internal
states we wish to consider are split by twice the rotational
constant, i.e.

This means that∆k may be calculated as follows:

Assuming that the average kinetic energy of the ejected electron
is Ehk

that is

and since we have that

we have that

Performing photodetachment atEk ) 1 eV) 1/27 a.u. and given
that for e- µ ≈ 1 a.u., we have that

This means that the probability-density, measured by say, laser
induced fluorescence (LIF), must be collected over a volume-
element whose linear dimension is

for the modulations of eq 16 not to be averaged out so that the
signature of the uncollapsed wave packet of eq 16 could be
established.

In fact, the signature of the uncollapsed wave packet can never
be established in this way. To see this, we re-expressed the
above estimate in terms of∆τ, the measurement time over which
we are still aware of the difference between the collapsed and
uncollapsed wave packets.

However, a pulse of duration∆τ has bandwidth of 1/∆τ which
by eq 23) ∆e. As we show below when the pulse bandwidth
exceeds∆e it is not possible for us to be aware of the
measurement ofkA by measuring B!

III.2.1. Large Bandwidth Excitation-Pulse Case.To main-
tain (vibrational) coherence of the B fragment we must have
contributions fromV * V′ terms of eq 22. This can be realized
only when bothcV,k̂(E) andcV′,k̂(E′) are nonnegligible forE and
E′ that satisfy eq 22, namely theE1(t) pulse width must be larger
than the vibrational spacing∆e ) |eV - eV′|. In that case7,8

knowledge ofkV(E) as obtained from measurements performed
on A does not tell us which vibrational state is occupied by B,
since it is possible forkV(E) to be equal tokV′(E′).

The effect of the loss of “which way” information9,4,10 on
the observed coherence of the wave packet of B is illustrated

in Figure 1. We show there how temporal modulations develop
as we increase the bandwidth of theE1(t) dissociation laser.
Simultaneously with the increase in the laser’s bandwidth, we
progressively lose information concerning theV T kV(E)
correspondence, as otherE′ energies, for whichkV(E) ) kV′(E′),
begin to contribute significantly to the B probability-density.

Plotted also is the “which-way” parameter, (wV,V′ ≡ |cV -
cV′|) which ranges from 1 for the CW case, in which we have
full “which-way” information regarding the vibrationT transla-
tion correspondence, to 0, for an ultra broad-band pulse for
whichcV ∼ cV′, resulting in the loss of the vibrationT translation
“which-way” information.

In Figure 2, we plot the temporal modulations observed11 in
I2

- resulting from the

photodissociation process. The experiment is done in the
condensed phase with the momenta of the translational motion
never measured. Nevertheless, as predicted in eq 22, coherence
of the I2- fragment is observed and is being maintained for
relatively long times (until relaxation sets in).

When the “which-way” parameter is 1 (e.g., for CW excita-
tion) eq 22 only holds whenV ) V′ (hence whenE ) E′), and
we have that

an expression that is indistinguishable from the collapsed case
(CW). We see that in either, CW or ultrashort pulse, case, no

Figure 1. Modulation of the probability-density according to 12 as a
function of the dissociating pulse-width. The “which-way” parameter,
(wV,V′ ≡ |cV - cV′|) ranging from 1 for a narrow band pulse (∆ ) 10
cm-1) to 0.3 for a broad-band pulse (∆ ) 90 cm-1) indicates the degree
of “which way” information we have when we measurekV(E).

Figure 2. Modulation in the I2
- pump-probe signal resulting from

the short pulse dissociation of I3
- f I2

- + I. Taken from ref 11.

I3
- f I2

- + I

FB ) ∑
V
∫ dk̂ |cV,k̂(E) φV(r )|2 (24)

SF6
- f SF6 [j ) 0, 1] + e-

∆e∼ 3 cm-1 ) 1.37× 10-5 a.u.

∆e ) (kV
2 - kV′

2)/2µ

kh2/2µ ) Ehk

kh ) (2µEhk)
1/2

∆e≈ (kV - kV′)2kh/2µ ) ∆kkh/µ ) ∆k(2Ehk/µ)1/2

∆k ) (µ/(2Ehk))
1/2∆e

∆k ) (27/2)1/2(1.37× 10-5) ) 5 × 10-5

∆X < 2 × 104 a.u.≈ 1 µm

∆τ ) ∆X
V

) 1
∆k‚V

) 1
∆e

(23)
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information is conveyed about the measurement, or lack thereof,
from one fragment to its entangled partner.

IV. Degenerate Case

In the previous section, we saw that the lack of information
transfer between A and B is due to the cancellation of the
interference terms associated with differentkV(E) values upon
integration over the A-B distance. Since the difference inkV(E)
values is due to the nondegeneracy of the internal energyeV of
the B fragment, it is of interest to investigate whether informa-
tion transfer would be possible if theeV values were degenerate.

In the degenerate case, we would need to find another marker
to distinguish between the fragment channels, sincekV(E) are
the same for all degenerate fragment states. Such a marker can
be provided if one or both fragments are chiral. We consider
therefore the photodissociation of an A-B molecule made up
of A and B chiral fragments. Each fragment has a right-handed,
denotedD, optical-isomer and a left-handed, denotedL, optical-
isomer. Assuming that the adduct A-B has no handedness, and
since handedness is conserved, the photodissociation of A-B
can only result in the following two outcomes

Because of the degeneracy in the D and L fragment states, the
uncollapsed wave function can be written in the CW case as

wherecD,L and cL,D are preparation coefficients analogous to
cn

(1)(E) of the previous section, and

is a translational wave function which, because of degeneracy,
is common to all of the internal states of the fragments. It is
clear that averaging overR as performed onFB of 10 will not
kill the interference term because in this case|ψ(R,E)|2 ) N(k)2

is independent ofR. It is also clear that a measurement of the
handedness of A will immediately collapse the handedness of
B.

We can now ask whether an observer at say B can differenti-
ate between the uncollapsed and collapsed wave function, not
knowing whether measurement on A has been done. For
example, we can look at whether a certain optical transition is
allowed or not. If we start from a symmetric wave function of
A-B, we know that for an electric-dipole allowed transition
only transitions to an antisymmetric wave function are possible.
In contrast, since, per definition, the chiral fragments lack a
center of symmetry, the above selection rule does not apply to
them. This can also be seen in the following way: Each chiral
state can be written as a superposition of a symmetric and
antisymmetric states

Thus, each chiral state contains both a symmetric and an
antisymmetric component, hence transitions to both|A〉 and|S〉
excited states are allowed.

Thus the question is whether the entangled dissociated state
of eq 25 retains the symmetry property of the original wave
function of A-B (in which case an observer at B will be able
to distinguish between the collapsed and uncollapsed wave
function), or not.

To answer this question the observer at the B position
irradiates the B fragment by a second pulse of the form

whereω2 ) evf - ev is tuned to excite B to a final state where
interconversion between the D and L chiral states can readily
take place. This means thatVf, the final vibrational quantum
number of B, can be either symmetric with respect to inversion
Bvf ) BS or antisymmetric with respect to inversion,Bvf ) BA.

Let us choose the initial state ofA-B to be symmetric. This
means that

The wave packet formed as a result of the action of this pulse
is of the form

whereE′ ) evf + k2/(2µ). Due to the presence of the|AD〉 and
|AL〉 state vectors, the two terms above do not interfere. In their
absence,|Ψvf〉 would have become symmetric with respect to
inversion of fragment B.

To see this more clearly, we calculate the probability-density
of B by squaring the above expression and integrating overR
and the A internal variables. We find, using the orthogonality
of |AD〉 and |AL〉, that

Since each of the|〈Bvf|d2|BL|2 and |〈Bvf|d2|BD|2 terms allows
it, transitions to both the symmetric and antisymmetric|Bvf〉
states can be observed, exactly as in the collapsed wave function.
It is interesting to note that it is the remote presence of the chiral
fragment A that guarantees that the local properties of its
entangled partner B prevail. This is despite the fact that these
properties are different from those of the original A-B wave
function.

V. Conclusion

We have shown on the basis of the properties of the solutions
of the Schro¨dinger equation, that no information can be
transferred between observers of two fragments resulting from
the photodissociation of a polyatomic molecule, as a mere result
of the performance of measurements on either fragment. We
have shown this to be the case even if we consider the possibility
that this information can somehow be transferred at speeds
smaller than the speed of light.

We have also shown that when dissociation with sufficiently
broad-band pulses is performed, the measurement of the
momentum of one fragment is not enough to collapse the wave
function of the other fragment. As a result, one can observe
coherences between many internal states of fragments resulting
from coherences induced in their parent molecule.
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